# Databricks Tasks
Verified by Prefect
This module contains a collection of tasks for interacting with Databricks resources.
# DatabricksSubmitRun
class
prefect.tasks.databricks.databricks_submitjob.DatabricksSubmitRun
(databricks_conn_secret=None, json=None, spark_jar_task=None, notebook_task=None, new_cluster=None, existing_cluster_id=None, libraries=None, run_name=None, timeout_seconds=None, polling_period_seconds=30, databricks_retry_limit=3, databricks_retry_delay=1, **kwargs)[source]Submits a Spark job run to Databricks using the api/2.0/jobs/runs/submit API endpoint.
Currently the named parameters that DatabricksSubmitRun
task supports are
spark_jar_task
-notebook_task
-new_cluster
-existing_cluster_id
-libraries
-run_name
-timeout_seconds
Args:
databricks_conn_secret (dict, optional)
: Dictionary representation of the Databricks Connection String. Structure must be a string of valid JSON. To use token based authentication, provide the keytoken
in the string for the connection and create the keyhost
.PREFECT__CONTEXT__SECRETS__DATABRICKS_CONNECTION_STRING= '{"host": "abcdef.xyz", "login": "ghijklmn", "password": "opqrst"}'
ORPREFECT__CONTEXT__SECRETS__DATABRICKS_CONNECTION_STRING= '{"host": "abcdef.xyz", "token": "ghijklmn"}'
See documentation of theDatabricksSubmitRun
Task to see how to pass in the connection string usingPrefectSecret
.json (dict, optional)
: A JSON object containing API parameters which will be passed directly to theapi/2.0/jobs/runs/submit
endpoint. The other named parameters (i.e.spark_jar_task
,notebook_task
..) to this task will be merged with this json dictionary if they are provided. If there are conflicts during the merge, the named parameters will take precedence and override the top level json keys. (templated) For more information about templating see :ref:jinja-templating
. https://docs.databricks.com/api/latest/jobs.html#runs-submitspark_jar_task (dict, optional)
: The main class and parameters for the JAR task. Note that the actual JAR is specified in thelibraries
. EITHERspark_jar_task
ORnotebook_task
should be specified. This field will be templated. https://docs.databricks.com/api/latest/jobs.html#jobssparkjartasknotebook_task (dict, optional)
: The notebook path and parameters for the notebook task. EITHERspark_jar_task
ORnotebook_task
should be specified. This field will be templated. https://docs.databricks.com/api/latest/jobs.html#jobsnotebooktasknew_cluster (dict, optional)
: Specs for a new cluster on which this task will be run. EITHERnew_cluster
ORexisting_cluster_id
should be specified. This field will be templated. https://docs.databricks.com/api/latest/jobs.html#jobsclusterspecnewclusterexisting_cluster_id (str, optional)
: ID for existing cluster on which to run this task. EITHERnew_cluster
ORexisting_cluster_id
should be specified. This field will be templated.libraries (list of dicts, optional)
: Libraries which this run will use. This field will be templated. https://docs.databricks.com/api/latest/libraries.html#managedlibrarieslibraryrun_name (str, optional)
: The run name used for this task. By default this will be set to the Prefecttask_id
. Thistask_id
is a required parameter of the superclassTask
. This field will be templated.timeout_seconds (int, optional)
: The timeout for this run. By default a value of 0 is used which means to have no timeout. This field will be templated.polling_period_seconds (int, optional)
: Controls the rate which we poll for the result of this run. By default the task will poll every 30 seconds.databricks_retry_limit (int, optional)
: Amount of times retry if the Databricks backend is unreachable. Its value must be greater than or equal to 1.databricks_retry_delay (float, optional)
: Number of seconds to wait between retries (it might be a floating point number).**kwargs (dict, optional)
: additional keyword arguments to pass to the Task constructor
In the first way, you can take the JSON payload that you typically use to call the api/2.0/jobs/runs/submit
endpoint and pass it directly to our DatabricksSubmitRun
task through the json
parameter.
from prefect import Flow
from prefect.tasks.secrets import PrefectSecret
from prefect.tasks.databricks import DatabricksSubmitRun
json = {
'new_cluster': {
'spark_version': '10.4.x-scala2.12',
'num_workers': 2,
'node_type_id': "m4.large",
'aws_attributes': {
'ebs_volume_type': "GENERAL_PURPOSE_SSD",
'ebs_volume_count': 3,
'ebs_volume_size': 100,
}
},
'notebook_task': {
'notebook_path': '/Users/andrew.h@prefect.io/records',
},
}
with Flow("my flow") as flow:
conn = PrefectSecret('DATABRICKS_CONNECTION_STRING')
notebook_run = DatabricksSubmitRun(json=json)
notebook_run(databricks_conn_secret=conn)
Another way to accomplish the same thing is to use the named parameters of the DatabricksSubmitRun
directly. Note that there is exactly one named parameter for each top level parameter in the runs/submit
endpoint. In this method, your code would look like this:
from prefect import Flow
from prefect.tasks.secrets import PrefectSecret
from prefect.tasks.databricks import DatabricksSubmitRun
new_cluster = {
'spark_version': '10.4.x-scala2.12',
'num_workers': 2,
'node_type_id': "m4.large",
'aws_attributes': {
'ebs_volume_type': "GENERAL_PURPOSE_SSD",
'ebs_volume_count': 3,
'ebs_volume_size': 100,
}
}
notebook_task = {
'notebook_path': '/Users/prefect@example.com/PrepareData',
}
with Flow("my flow") as flow:
conn = PrefectSecret('DATABRICKS_CONNECTION_STRING')
notebook_run = DatabricksSubmitRun(
new_cluster=new_cluster,
notebook_task=notebook_task)
notebook_run(databricks_conn_secret=conn)
In the case where both the json parameter AND the named parameters are provided, they will be merged together. If there are conflicts during the merge, the named parameters will take precedence and override the top level json
keys. This task requires a Databricks connection to be specified as a Prefect secret and can be passed to the task like so:
from prefect import Flow
from prefect.tasks.secrets import PrefectSecret
from prefect.tasks.databricks import DatabricksSubmitRun
with Flow("my flow") as flow:
conn = PrefectSecret('DATABRICKS_CONNECTION_STRING')
notebook_run = DatabricksSubmitRun(json=...)
notebook_run(databricks_conn_secret=conn)
methods: |
---|
prefect.tasks.databricks.databricks_submitjob.DatabricksSubmitRun.run (databricks_conn_secret=None, json=None, spark_jar_task=None, notebook_task=None, new_cluster=None, existing_cluster_id=None, libraries=None, run_name=None, timeout_seconds=None, polling_period_seconds=30, databricks_retry_limit=3, databricks_retry_delay=1)[source] |
Task run method.
|
# DatabricksRunNow
class
prefect.tasks.databricks.databricks_submitjob.DatabricksRunNow
(databricks_conn_secret=None, job_id=None, json=None, notebook_params=None, python_params=None, spark_submit_params=None, jar_params=None, polling_period_seconds=30, databricks_retry_limit=3, databricks_retry_delay=1, **kwargs)[source]Runs an existing Spark job run to Databricks using the api/2.1/jobs/run-now API endpoint.
Currently the named parameters that DatabricksRunNow
task supports are
job_id
-json
-notebook_params
-python_params
-spark_submit_params
-jar_params
Args:
databricks_conn_secret (dict, optional)
: Dictionary representation of the Databricks Connection String. Structure must be a string of valid JSON. To use token based authentication, provide the keytoken
in the string for the connection and create the keyhost
.PREFECT__CONTEXT__SECRETS__DATABRICKS_CONNECTION_STRING= '{"host": "abcdef.xyz", "login": "ghijklmn", "password": "opqrst"}'
ORPREFECT__CONTEXT__SECRETS__DATABRICKS_CONNECTION_STRING= '{"host": "abcdef.xyz", "token": "ghijklmn"}'
See documentation of theDatabricksSubmitRun
Task to see how to pass in the connection string usingPrefectSecret
.job_id (str, optional)
: The job_id of the existing Databricks job. https://docs.databricks.com/api/latest/jobs.html#run-nowjson (dict, optional)
: A JSON object containing API parameters which will be passed directly to theapi/2.0/jobs/run-now
endpoint. The other named parameters (i.e.notebook_params
,spark_submit_params
..) to this operator will be merged with this json dictionary if they are provided. If there are conflicts during the merge, the named parameters will take precedence and override the top level json keys. (templated) https://docs.databricks.com/api/latest/jobs.html#run-nownotebook_params (dict, optional)
: A dict from keys to values for jobs with notebook task, e.g. "notebook_params": {"name": "john doe", "age": "35"}. The map is passed to the notebook and will be accessible through the dbutils.widgets.get function. See Widgets for more information. If not specified upon run-now, the triggered run will use the job’s base parameters. notebook_params cannot be specified in conjunction with jar_params. The json representation of this field (i.e. {"notebook_params":{"name":"john doe","age":"35"}}) cannot exceed 10,000 bytes. https://docs.databricks.com/user-guide/notebooks/widgets.htmlpython_params (list[str], optional)
: A list of parameters for jobs with python tasks, e.g. "python_params": ["john doe", "35"]. The parameters will be passed to python file as command line parameters. If specified upon run-now, it would overwrite the parameters specified in job setting. The json representation of this field (i.e. {"python_params":["john doe","35"]}) cannot exceed 10,000 bytes. https://docs.databricks.com/api/latest/jobs.html#run-nowspark_submit_params (list[str], optional)
: A list of parameters for jobs with spark submit task, e.g. "spark_submit_params": ["--class", "org.apache.spark.examples.SparkPi"]. The parameters will be passed to spark-submit script as command line parameters. If specified upon run-now, it would overwrite the parameters specified in job setting. The json representation of this field cannot exceed 10,000 bytes. https://docs.databricks.com/api/latest/jobs.html#run-nowjar_params (list[str], optional)
: A list of parameters for jobs with JAR tasks, e.g. "jar_params": ["john doe", "35"]. The parameters will be used to invoke the main function of the main class specified in the Spark JAR task. If not specified upon run-now, it will default to an empty list. jar_params cannot be specified in conjunction with notebook_params. The JSON representation of this field (i.e. {"jar_params":["john doe","35"]}) cannot exceed 10,000 bytes. https://docs.databricks.com/api/latest/jobs.html#run-nowtimeout_seconds (int, optional)
: The timeout for this run. By default a value of 0 is used which means to have no timeout. This field will be templated.polling_period_seconds (int, optional)
: Controls the rate which we poll for the result of this run. By default the task will poll every 30 seconds.databricks_retry_limit (int, optional)
: Amount of times retry if the Databricks backend is unreachable. Its value must be greater than or equal to 1.databricks_retry_delay (float, optional)
: Number of seconds to wait between retries (it might be a floating point number).**kwargs (dict, optional)
: additional keyword arguments to pass to the Task constructor
In the first way, you can take the JSON payload that you typically use to call the api/2.1/jobs/run-now
endpoint and pass it directly to our DatabricksRunNow
task through the json
parameter.
from prefect import Flow
from prefect.tasks.secrets import PrefectSecret
from prefect.tasks.databricks import DatabricksRunNow
json = {
"job_id": 42,
"notebook_params": {
"dry-run": "true",
"oldest-time-to-consider": "1457570074236"
}
}
with Flow("my flow") as flow:
conn = PrefectSecret('DATABRICKS_CONNECTION_STRING')
notebook_run = DatabricksRunNow(json=json)
notebook_run(databricks_conn_secret=conn)
Another way to accomplish the same thing is to use the named parameters of the DatabricksRunNow
task directly. Note that there is exactly one named parameter for each top level parameter in the run-now
endpoint. In this method, your code would look like this:
from prefect import Flow
from prefect.tasks.secrets import PrefectSecret
from prefect.tasks.databricks import DatabricksRunNow
job_id = 42
notebook_params = {
"dry-run": "true",
"oldest-time-to-consider": "1457570074236"
}
python_params = ["douglas adams", "42"]
spark_submit_params = ["--class", "org.apache.spark.examples.SparkPi"]
jar_params = ["john doe","35"]
with Flow("my flow') as flow:
conn = PrefectSecret('DATABRICKS_CONNECTION_STRING')
notebook_run = DatabricksRunNow(
notebook_params=notebook_params,
python_params=python_params,
spark_submit_params=spark_submit_params,
jar_params=jar_params
)
notebook_run(databricks_conn_secret=conn)
In the case where both the json parameter AND the named parameters are provided, they will be merged together. If there are conflicts during the merge, the named parameters will take precedence and override the top level json
keys.
This task requires a Databricks connection to be specified as a Prefect secret and can be passed to the task like so:
from prefect import Flow
from prefect.tasks.secrets import PrefectSecret
from prefect.tasks.databricks import DatabricksRunNow
with Flow("my flow") as flow:
conn = PrefectSecret('DATABRICKS_CONNECTION_STRING')
notebook_run = DatabricksRunNow(json=...)
notebook_run(databricks_conn_secret=conn)
methods: |
---|
prefect.tasks.databricks.databricks_submitjob.DatabricksRunNow.run (databricks_conn_secret=None, job_id=None, json=None, notebook_params=None, python_params=None, spark_submit_params=None, jar_params=None, polling_period_seconds=30, databricks_retry_limit=3, databricks_retry_delay=1)[source] |
Task run method.
|
# DatabricksSubmitMultitaskRun
class
prefect.tasks.databricks.databricks_submitjob.DatabricksSubmitMultitaskRun
(databricks_conn_secret=None, tasks=None, run_name=None, timeout_seconds=None, idempotency_token=None, access_control_list=None, polling_period_seconds=30, databricks_retry_limit=3, databricks_retry_delay=1, git_source=None, **kwargs)[source]Creates and triggers a one-time run via the Databricks submit run API endpoint. Supports the execution of multiple Databricks tasks within the Databricks job run. Note: Databricks tasks are distinct from Prefect tasks. All tasks configured will run as a single Prefect task.
For more information about the arguments of this task, refer to the Databricks submit run API documentation
Args:
databricks_conn_secret (dict, optional)
: Dictionary representation of the Databricks Connection String. Structure must be a string of valid JSON. To use token based authentication, provide the keytoken
in the string for the connection and create the keyhost
.PREFECT__CONTEXT__SECRETS__DATABRICKS_CONNECTION_STRING= '{"host": "abcdef.xyz", "login": "ghijklmn", "password": "opqrst"}'
ORPREFECT__CONTEXT__SECRETS__DATABRICKS_CONNECTION_STRING= '{"host": "abcdef.xyz", "token": "ghijklmn"}'
tasks (List[JobTaskSettings])
: A list containing the Databricks task configuration. Should contain configuration for at least one task.timeout_seconds (int, optional)
: An optional timeout applied to each run of this job. The default behavior is to have no timeout.run_name (str, optional)
: An optional name for the run. The default value is "Job run created by Prefect flow run {flow_run_name}".idempotency_token (str, optional)
: An optional token that can be used to guarantee the idempotency of job run requests. Defaults to the Python object id.access_control_list (List[AccessControlRequest])
: List of permissions to set on the job.polling_period_seconds (int, optional)
: Controls the rate which we poll for the result of this run. By default the task will poll every 30 seconds.databricks_retry_limit (int, optional)
: Amount of times retry if the Databricks backend is unreachable. Its value must be greater than or equal to 1.databricks_retry_delay (float, optional)
: Number of seconds to wait between retries (it might be a floating point number).git_source (GitSource)
: A git source for the source code of the jobs (see https://databricks.com/blog/2022/06/21/build-reliable-production-data-and-ml-pipelines-with-git-support-for-databricks-workflows.html)**kwargs (dict, optional)
: Additional keyword arguments to pass to the Task constructor
from prefect import Flow
from prefect.tasks.databricks import DatabricksSubmitMultitaskRun
from prefect.tasks.databricks.models import (
AccessControlRequestForUser,
AutoScale,
AwsAttributes,
AwsAvailability,
CanManage,
JobTaskSettings,
Library,
NewCluster,
NotebookTask,
SparkJarTask,
TaskDependency,
)
submit_multitask_run = DatabricksSubmitMultitaskRun(
tasks=[
JobTaskSettings(
task_key="Sessionize",
description="Extracts session data from events",
existing_cluster_id="0923-164208-meows279",
spark_jar_task=SparkJarTask(
main_class_name="com.databricks.Sessionize",
parameters=["--data", "dbfs:/path/to/data.json"],
),
libraries=[Library(jar="dbfs:/mnt/databricks/Sessionize.jar")],
timeout_seconds=86400,
),
JobTaskSettings(
task_key="Orders_Ingest",
description="Ingests order data",
existing_cluster_id="0923-164208-meows279",
spark_jar_task=SparkJarTask(
main_class_name="com.databricks.OrdersIngest",
parameters=["--data", "dbfs:/path/to/order-data.json"],
),
libraries=[Library(jar="dbfs:/mnt/databricks/OrderIngest.jar")],
timeout_seconds=86400,
),
JobTaskSettings(
task_key="Match",
description="Matches orders with user sessions",
depends_on=[
TaskDependency(task_key="Orders_Ingest"),
TaskDependency(task_key="Sessionize"),
],
new_cluster=NewCluster(
spark_version="10.4.x-scala2.12",
node_type_id="m4.large",
spark_conf={"spark.speculation": True},
aws_attributes=AwsAttributes(
availability=AwsAvailability.SPOT,
zone_id="us-west-2a",
ebs_volume_type="GENERAL_PURPOSE_SSD",
ebs_volume_count=3,
ebs_volume_size=100,
),
autoscale=AutoScale(min_workers=1, max_workers=2),
),
notebook_task=NotebookTask(
notebook_path="/Users/user.name@databricks.com/Match",
base_parameters={"name": "John Doe", "age": "35"},
),
timeout_seconds=86400,
),
],
run_name="A multitask job run",
timeout_seconds=86400,
access_control_list=[
AccessControlRequestForUser(
user_name="jsmith@example.com", permission_level=CanManage.CAN_MANAGE
)
],
)
with Flow("my flow") as f:
conn = PrefectSecret('DATABRICKS_CONNECTION_STRING')
submit_multitask_run(databricks_conn_secret=conn)
methods: |
---|
prefect.tasks.databricks.databricks_submitjob.DatabricksSubmitMultitaskRun.convert_dict_to_kwargs (input)[source] |
Method to convert a dict that matches the structure of the Databricks API call into the required object types for the task input
Example: Use a JSON-like dict as input
|
prefect.tasks.databricks.databricks_submitjob.DatabricksSubmitMultitaskRun.run (databricks_conn_secret=None, tasks=None, run_name=None, timeout_seconds=None, idempotency_token=None, access_control_list=None, polling_period_seconds=None, databricks_retry_limit=None, databricks_retry_delay=None, git_source=None)[source] |
Task run method. Any values passed here will overwrite the values used when initializing the task.
|
# DatabricksGetJobID
class
prefect.tasks.databricks.databricks_get_job_id.DatabricksGetJobID
(databricks_conn_secret=None, search_limit=25, polling_period_seconds=30, databricks_retry_limit=3, databricks_retry_delay=1, **kwargs)[source]Finds a job_id corresponding to a job name on Databricks using the api/2.1/jobs/list API endpoint.
Args:
databricks_conn_secret (dict, optional)
: Dictionary representation of the Databricks Connection String. Structure must be a string of valid JSON. To use token based authentication, provide the keytoken
in the string for the connection and create the keyhost
.PREFECT__CONTEXT__SECRETS__DATABRICKS_CONNECTION_STRING= '{"host": "abcdef.xyz", "login": "ghijklmn", "password": "opqrst"}'
ORPREFECT__CONTEXT__SECRETS__DATABRICKS_CONNECTION_STRING= '{"host": "abcdef.xyz", "token": "ghijklmn"}'
See documentation of theDatabricksSubmitRun
Task to see how to pass in the connection string usingPrefectSecret
.search_limit (int, optional)
: Controls the number of jobs to return per API call, This value must be greater than 0 and less than or equal to 25.polling_period_seconds (int, optional)
: Controls the rate which we poll for the result of this run. By default the task will poll every 30 seconds.databricks_retry_limit (int, optional)
: Amount of times retry if the Databricks backend is unreachable. Its value must be greater than or equal to 1.databricks_retry_delay (float, optional)
: Number of seconds to wait between retries (it might be a floating point number).**kwargs (dict, optional)
: Additional keyword arguments to pass to the Task constructor.
job_id (int)
: Job id of the job name.
job_id
for DatabricksRunNow
. conn = PrefectSecret('DATABRICKS_CONNECTION_STRING')
get_job_id = DatabricksGetJobID(databricks_conn_secret=conn)
dbx_job_id = get_job_id(job_name="dbx")
notebook_run = DatabricksRunNow(
job_id=dbx_job_id,
notebook_params=notebook_params,
python_params=python_params,
spark_submit_params=spark_submit_params,
jar_params=jar_params
)
notebook_run(databricks_conn_secret=conn)
methods: |
---|
prefect.tasks.databricks.databricks_get_job_id.DatabricksGetJobID.run (job_name, databricks_conn_secret=None, search_limit=25, polling_period_seconds=30, databricks_retry_limit=3, databricks_retry_delay=1)[source] |
Task run method.
|
This documentation was auto-generated from commit bd9182e
on July 31, 2024 at 18:02 UTC